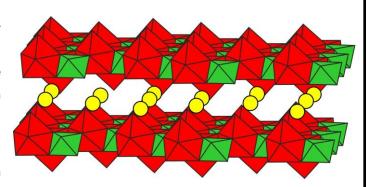


Martin Luther Universität Halle-Wittenberg Institut für Geowissenschaften Mineralogie/Geochemie

Prof. Dr. Dr. H. Pöllmann Von-Seckendorff-Platz 3, 06120 Halle, Tel: +49.345.5526111, Fax:+49.345.5527180, e-mail: herbert.poellmann@geo.uni-halle.de


Einbau von MoO₄²⁻ in lamellare Calciumaluminathydrate vom Typus TCAH

Cand. MSc. Maurice Pawlik

Tetracalciumaluminathydrat (TCAH) wird in einer Fällungsreaktion, bei Anwesenheit von Calcium-, Aluminiumund Hydroxidionen im basischen Milieu wässriger Lösungen, gebildet. TCAH ist eine Verbindung aus der Gruppe der Layered Double Hydroxides (LDH). Wegen des Auftretens der Verbindungen des LDH-Typs in Baustoffen, als Speichermineral usw. sind zahlreiche Verbindungen mit diversen Kat- und Anionen bereits synthetisiert und charakterisiert worden. 1977 bestimmte ALLMANN erstmals die Struktur des Monosulfats. Die Calciumaluminathydrate bestehen aus einer [Ca₂Al(OH)₆]⁺-Hauptschicht und einer Zwischenschicht, die Anionen und Wasser enthält.

Eine generelle Schreibweise, unter Berücksichtigung der zahlreichen Substitutionsmöglichkeiten, lautet: $[M^{II}_{-x}M^{III}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/y}*mH_{2}O]$. Eine Zusammenfassung über die Substitutionen in lamellaren Schichtstrukturen gibt $P\"{OLLMANN}$ (1991).

In der Arbeit soll der Einbau von MoO₄²⁻ in TCAH, sowie eine eventuelle Mischkristallbildung von MoO₄²⁻ mit OH⁻ untersucht werden. Dafür werden zunächst die Ausgangsstoffe, die zur Bildung des TCAH nötig sind, hergestellt: CaO*Al₂O₃ (CA) wird mittels Feststoffsynthese und CaO durch Dekarbonatisieren von CaCO₃ bei 1000 °C synthetisiert.

[Al(OH)₆]³⁻

Aⁿ⁻Zwischenschichtanion

Abbildung 1: Schematische Ansicht TCAH

Eine Portlanditsuspension wird mit CA im stöchiometrischen Verhältnis des TCAH (3CaO:1CA) versetzt: $3 \text{ Ca}(OH)_2 + \text{CaO*Al}_2O_3 + \text{n H}_2O \rightarrow [\text{Ca}_4\text{Al}_2(OH)_{12}][2OH^*\text{nH}_2O]$ (W/F = 10). Mit diesem Syntheseprodukt werden Sorptionsversuche mit MoO₄²⁻ durchgeführt.

Zur Untersuchung der Substitution von 2 OH durch MoO₄²⁻ werden zusammen mit dem CA fortlaufend erhöhte, stöchiometrische Anteile von Na₂MoO₄ zur Portlanditsuspension zugegeben:

3 Ca(OH)₂ + x Na₂MoO₄ + CaO*Al₂O₃ + n H₂O → [Ca₄Al₂(OH)₁₂][2-2xOH + xMoO4*nH₂O], mit 0 ≤ x ≤ 1.

Literatur:

ALLMANN, R. (1977): Refinement of the hybrid layer structure $(Ca_2AI(OH)_6^+ \cdot [1/2SO_4 \cdot 3H_2O]^-$. – N. Jb. Min. Mh., 3, 136-144.

PÖLLMANN, H. (1991): Immobilization of pollutants in waste disposals by forming mineral reservoirs. Proc. Int. Conf. on Applied Min., Vol. II, paper 43, Pretoria.

STERN, E. (2003): Untersuchungen an Tetracalciumaluminathydrat und der Einbau von Alkylsulfonaten. – Dissertation, Halle.